w^2+2w+1=4w^2-14+6

Simple and best practice solution for w^2+2w+1=4w^2-14+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for w^2+2w+1=4w^2-14+6 equation:



w^2+2w+1=4w^2-14+6
We move all terms to the left:
w^2+2w+1-(4w^2-14+6)=0
We get rid of parentheses
w^2-4w^2+2w+14-6+1=0
We add all the numbers together, and all the variables
-3w^2+2w+9=0
a = -3; b = 2; c = +9;
Δ = b2-4ac
Δ = 22-4·(-3)·9
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{7}}{2*-3}=\frac{-2-4\sqrt{7}}{-6} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{7}}{2*-3}=\frac{-2+4\sqrt{7}}{-6} $

See similar equations:

| 17x-(4x-2)=80 | | 22-3x=-14 | | 81/7+r=-29 | | -4+7x+3-2x=0 | | (x+x+1+x+2+x+3+x+4)5=225 | | 703/4-676/25=x | | 5/4x-1/8=19/8 | | 2+3(3x5-5)=-4 | | 8x+10=90° | | 142+75*x=17 | | 2x-3+x=24=9 | | y-3(y+1)=-3 | | 3x-43=2x16 | | 0,3x+7=0,1x+5 | | x+5/8=x+5/16 | | 8-1/2x=−6(3/4x−2)+4 | | (7x-3)(9x+5)=0 | | 2x+5=x-41 | | 8w-18w=50 | | 2x-4x2=16 | | X+x-20=140 | | X^2-4x-0.8=0 | | 5z/9+7=-3 | | 3zz=4 | | 4^x-3.2^(x+3)+128=0 | | 40x-0.5=5x | | u/1.5u+8.0=3.5 | | 5x^2-40x-165=0 | | -10=-4h-6 | | 5x^2-40x+15=180 | | x/2+71/2=91/2 | | x/2+71/2=92/2 |

Equations solver categories